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1 Introduction

With the development of internet and the reduction in cost of image capturing devices such
as digital cameras, there is a rapid increment in the size of digital image collection. Efficient
image searching browsing and retrieval tools are now becoming more and more indispensable.
For this purpose many image retrieval techniques have been developed in recent times. All of
these techniques are centred around two key domains:-

• Text Based Image Retrieval

• Content Based Image Retrieval

In text based image retrieval first the input image database is annotated with appropriate
semantic tags. These tags can be identified using automated techniques but, in majority of the
cases this has to be done using manual intervention. Once the annotated image database is
obtained, image retrieval is done by querying the database system (DBMS) using appropriate
querying techniques. One of the major issues with this approach is labelling the image database
with appropriate semantic tags. To achieve a reasonable querying system, the quality of these
semantic tags are of utmost importance. This is an extremely challenging problem and more
often than not requires some form of human intervention. As the database size increases this
technique simply doesn’t scale. In CBIR, visual content of the images such as colour, texture,
shapes are used to index the images. The fundamental difference between content-based and
text-based image retrieval systems is that the latter requires manual intervention in some sense.
Humans tend to associate high-level features in the form of semantic tags, in CBIR the algorithm
tries to construct the high level features using low level features like colour, texture, shape, etc.
Although there exist several sophisticated algorithms that try to capture high level features
from low level features, these algorithms are unable to model the semantic representations in
the human mind effectively [2]. Therefore, presently the performance CBIR is quite far from the
user’s expectations.

In [3] Eakins segregates the CBIR queries into three levels:-

• Level 1: Retrieval based on primitive features like color, texture, shape or the spatial
location of image elements. A typical query in this scenario will be ’find pictures that look
like this’.

• Level 2: Retrieval of objects of a given type identified by derived features. For example
’find pictures of a flower’.

• Level 3: Retrieval of images that contain a semantic relationship between identified objects.
Query example ’find pictures of a man riding a horse’.

Queries in Level 1 are typically a sample image to which the retrieval algorithm matches
the images in the image database and returns the most relevant results. This form of querying
is most restrictive as most search queries are typically text-based. Level 2 and 3 requires the
development of high level features that powerful enough to bridge the semantic gap. Several of
the techniques discussed in [1] try to achieve this by first separating the input images into blobs
and then associate relevant semantic tags to these blobs.

This project is aimed at developing automated image annotation techniques for a digital
archive of paintings. This is achieved by first segmenting the input image into local clusters
based on colour and textural similarity. Then machine learning algorithms are used to classify
the identified blobs into a number of high level semantic classes.
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2 Graph Based Segmentation

Local clustering based on colour and textural similarity is done to separate the input image into
blobs. This is achieved by applying a graph based image segmentation algorithm [4] on the input
image. Graph-based image segmentation represent the problem in terms of graph G = (V,E)
where each node vi ∈ V represents each pixel in the image, and the edges in E connect pairs
of neighbouring pixels. The edges are associated with an edge weight that is based on some
property of the pixels it connects like colour intensity or textural similarity.

2.1 Algorithm

The input to the algorithm is a graph G = (V,E), with n vertices and m edges. The output is
a segmentation of V into components S = (C1, . . . , Cr).

1. Create the image graph where V are the pixels in the image. For every pair of pixels in
the 4 neighbourhood of a pixel add an edge e, where the edge weight is squared distance
between the colour intensity of the pixels.

2. Sort E into π = (e1, . . . , em) in the non-decreasing order by edge weights.

3. Initialise the segmentation S0 where each vertex (pixel in the image) vi ∈ V is its own
component.

4. Repeat step 5 for q = 1, . . . ,m.

5. Construct Sq from Sq−1 as follows. Choose the qth edge from π. Let vi and vj be the
vertices connected by eq.

• If vi and vj belong to the same component. Do nothing.

• If vi and vj belong to different components but w(eq) > threshold[vi] or w(eq) >
threshold[vj], where w(eq) denotes the edge weight of edge eq. The edge does not
satisfy the merging criterion, do nothing.

• If vi and vj belong to different components and the edge weight satisfies the merging
criterion. Merge the components and update the threshold values.

6. Return S = Sm.

Figure 1: Graph Based Segmentation
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3 Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients (HOG) [5] is one of the most popular feature descriptor used
for object detection in computer vision. The HOG descriptor technique counts the occurrences
of gradient orientations in a given region of interest (ROI) and forms a histogram of gradient
directions.

In HOG the image is divided into small connected regions called cells (generally of 8x8 size).
For each of these of cells a histogram of gradient directions is computed. Within each cell
gradient is calculated at each pixel location. Then these 64 gradients are taken and put into
a 9 bin histogram. Histogram ranges from 0-180◦(Dalal and Triggs used unsigned gradients),
so there are 20 degrees per bin. For each gradient vector, it’s contribution is dependent on its
magnitude, so stronger gradient vectors have larger contribution. Furthermore, the contribution
of gradient vectors is split into two nearest bins. For example, a gradient oriented at 75◦, we
add 3/4th its magnitude to the bin centred at 70◦and 1/4th the magnitude in the bin centred at
90◦. This is done so that slight changes in the gradient orientation don’t change the histogram
drastically (to ensure the stability in the histogram).

Broadly the HOG computation algorithm can be summarised (see Fig. 2) into the following
steps:-

1. Compute centred gradients in the horizontal and vertical direction using 1D gradient mask
[-1 0 1].

2. Divide the image into blocks (generally 16x16 size with 50% overlap).

3. Divide the blocks into further cells (generally 2x2 cells of size 8x8).

4. Quantize the gradient orientation, at each pixel in the cell, depending on gradient magni-
tude in the appropriate bins.

5. Apply contrast normalisation over overlapping blocks.

6. Compute the histogram across all cells and return the feature vector.

Figure 2: Histogram of Oriented Gradients
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4 Support Vector Machine (SVM)

Support Vector Machine (SVM) [6] is a widely used technique for data classification. In this
technique we try to find the hyperplane with the maximum distance from the positive and
negative data points. This distance is termed as margin and the data points that form the
decision boundary are called support vectors. The idea behind SVM is to find the optimal value
of hyperplane parameters that maximise the margin of the decision boundary.

The primary reason why SVM is widely used is its ability to map the given data points
to a higher dimensional space (maybe infinite) and apply SVM on the transformation without
significant increase in the computation. This is done through the use of kernel functions K
which allow dot product computation without actually transforming the original point to the
higher dimensional space.

K(xi, xj) ≡ φ(xi)
Tφ(xj) (1)

Given a set of training data points (xi, yi), i = 1 . . . l where xi ∈ Rn and yi ∈ −1, 1, SVM
tries to find the optimal solution to the following problem:-

min
w,b,ε

1

2
wTw + C

l∑
i=1

εi

subject to yi(w
Tφ(xi) + b) ≥ 1− εi, εi ≥ 0

(2)

Since in a real world application the data is often not linearly separable, an error term is
introduced in the optimisation condition. The constant C > 0 is termed as the penalty parameter
and this needs to be set by the SVM algorithm.

The kernel function used in the implementation is the Radial Basis Function (RBF) given
by the following equation:-

K(xi, xj) = e−γ||xi−xj ||
2

, γ > 0 (3)

The values of these hyperparameters namely, C and γ is done by using the grid.py tool [8]
provided in LibSVM [7]. This tool performs a ”grid search” on C and γ using cross-validation.

5 Sliding Window Algorithm

Sliding window algorithm is one of the most commonly used algorithm for object detection in a
digital image. The algorithm involves sliding a window of a predefined size across the image and
applying the classifier at every instance. To detect objects of different sizes the input images
is scaled appropriately and same algorithm is applied on the scaled image. The amount of
displacement between two successive window instances needs to be initialised by the user and
in our scenario the value needs to be a multiple of the cell size, in order to ensure compatibility
with the HOG features. The second issue that needs to be addressed is a method to eliminate
overlapping window detections. A simple way to do this will be to calculate the area overlap
between overlapping windows, if the area overlap is above a certain threshold then the detections
are merged.

5.1 Procuring the Dataset

The training dataset consists of 3 separate classes namely:

• Faces: 146 instances
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• Flowers: 225 instances

• Others (Background): 1572 instances

Each data instance is a 64x64 RGB coloured image in the JPG format.

Figure 3: Sample images from the dataset

Each data instance was manually selected from the provided training images. If the data
instance was not of the aforementioned size, the image was scaled to the appropriate size. The
above figure shows some sample images from the data set.

5.2 Data Preprocessing

Each image in the training data set is converted to grayscale. To ensure symmetry in the data
set, both the grayscale image and its reflection is added to the training image set. For each
image in the training image set HOG features are computed and added to the training data set.
The 64x64 pixel detection window is divided into 7 blocks across and 7 blocks vertically, for a
total of 49 blocks. Each block contains 4 cells with a 9 bin histogram per cell, giving 36 values
per block. Therefore the final feature vector size = 49 x 36 = 1764.

As the feature vector is very large the amount of training data generated will be massive
which will result in slow training and detection time. Furthermore, high dimensional data suffers
from the curse of dimensionality. As the number of dimensions increase, the feature vector
space becomes more and more sparse. This affects the generalisation error of the classifier. To
counter these issues we apply Principle Component Analysis (PCA) to extract new dimensions
(principle components) that capture the maximum amount of variance in the dataset. It was seen
experimentally that 30 principle components capture 82% of the total variance. Increasing the
number of principle components to 75 did not increase the captured variance (87%) significantly.
PCA allows us to reduce the number of dimensions in the training data thereby making the model
less complex and reducing both the training and detection time.

5.3 Training the Classifier

The dataset generated in the previous set is partitioned into training and testing partition, in
order to gauge the generalisation error of the trained model. The training partition is fed to
LibSVM’s SVM solver [7] and using the appropriate values of C and γ, the model is generated.
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Using the above generated model the sliding window algorithm is applied to the input image.
The amount of time taken to run the algorithm on an input image of size 2925x790 is around
5.5 seconds. The step that takes the maximum amount of time is the PCA transformation.
We can optimise the time taken by parallelising the matrix multiplication step in the PCA
transformation. The detections by the sliding window algorithm for a sample image is shown in
the following figure in green.

Figure 4: Result of applying the sliding window algorithm.

6 Using the Code

All the dependencies have been installed on the provided machine. The following list is provided
for reference:-

• OpenCV 2.4.9 or greater

• gcc, g++, cmake. Can be installed directly using sudo apt-get install build-essential

• Git for cloning the repository

• Python 2.7 with numpy and scikit-learn

• LibSVM ver. 3.21 or greater

• Eigen 2 (Linear Algebra library)

• gnuplot (optional) if the user wants to view the C versus log(γ) curves)

• OpenMP (optional) to parallelise matrix multiplications in Eigen library

6.1 Segmentation

The graph based segmentation described in section 2 has been implemented using OpenCV in
C++. To represent the various components in the segmentation, disjoint-set data structure is
used. Union-by-rank is employed as the policy for the join operation and path compression
has also been implemented to increase the efficiency of subsequent find operations. The com-
ponents obtained after the segmentation step are post-processed to eliminate small components
surrounded by large components. This is done by computing the size ratio between neighbouring
components and if the size ratio is smaller than a user-defined threshold (COALESCE RATIO),
the components are merged into a single component. The directory structure of the segmentation
module looks something like this:-

• convolve.h (Implements the convolution operations required for the gaussian blurring)
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• disjoint-set.h (Implements the disjoint set data structure and its operations)

• filter.h (Implements the gaussian smoothing operation)

• image.h (Defines the image data structure)

• imconv.h (Defines image conversion methods)

• imutil.h (Various utilities)

• makefile

• misc.h

• pnmfile.h (File I/O for different formats of images)

• seg-graph.cpp (Driver script for the segmentation algorithm)

• segment-graph.h

• segment-image.h

The driver function provides several options.

• -c: Enable or disable post-processing of the components (default: OFF)

• -h: Display help message

• -k: specify the constant for the threshold function (default: 500)

• -m: Minimum component size, enforced by post processing stage (default: 15)

• -s: Constant required for the image smoothing (default: 0.5)

• -r: Provide COALESCE RATIO (default: 0.02)

A sample call to the driver code will look like:

./seg graph < FILENAME > [−chkmsr]

6.2 Classification

The process of classification can be divided into 4 broad steps:-

1. Creating labelled dataset from the set of given training images.

2. Computing the HOG features and applying PCA in the data preprocessing step.

3. Training the SVM model. Finding optimal values of hyperparameters (C and γ) and using
them to build the SVM model.

4. Using this model to run the sliding window algorithm in the input image.
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Figure 5: Creating the labelled dataset.

6.2.1 Creating the labelled dataset

createLabelledDataset.cpp is a script that allows the user to browse through the images in the
digital archive and selecting the training images. You can select the appropriate region of interest
(ROI) using mouse input. The keys ’n’ and ’p’ can be used to switch between next and previous
images and the scale of the region of interest can be adjusted using the ’[’ and ’]’ keys. ’0’ key
can be used to reset the scale of the ROI. For convenience, the training sets for ’face’ and ’flower’
is already provided in the code repository.

6.2.2 Computing HOG features

createTrainingData.cpp computes the HOG features for the training images and their reflection
across y-axis. It stores the feature vectors in a text file that will be used by LibSVM for
training the SVM classifier. createTrainingDataPCA.cpp also applies PCA on the training data
and stores the principle component vectors in a text file. Currently the number of principle
components have been defined to be 30, but, this number can be changed by modifying the
NUM EIGEN VECTORS variable.

Figure 6: Computing HOG features.
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6.2.3 Training the SVM model

generate model.py is a python script to split the feature data into training and testing partitions
and running the svm-train script of LibSVM to build the SVM model. The C and γ values
calculated by the grid.py script should be edited in the train command for getting the best
accuracy from the classifier. In our situation the optimal values of C is 8 and γ is 0.125. The
training data set size can also be changed in the python script. The partitioning code ensures
equal representation of both positive and negative samples so that the resultant model is not
biased. To train additional classes, their class names can be added into the class type list.

Figure 7: Training the SVM model.

6.2.4 Running the Sliding Window Algorithm

detectClassImage.cpp runs the sliding window algorithm on a sample image. The sample image
path is given as a command line argument to the script. The sliding window stride length can be
modified by adjusting the win size parameter which is set to 8 pixels by default. detectClassIm-
agePCA.cpp is similar in function but it additionally also computes the PCA transform for the
window instances using the principle components computed in the HOG feature computation
phase.

6.2.5 Additional Files

• HOG.h: Serves as a wrapper class to OpenCV’s HOG implementation. Once the HOG
features are computed for the entire image the user can directly access the required feature
vector stored in the memory.

• PCA.h: Uses Eigen library to compute the PCA transformation for the feature matrix.

• svmPredictVector.h: LibSVM currently only provides functionality to predict new data
points from files. This utilises existing LibSVM machinery to allow making predictions
using feature vector stored in the std::vector<float> format.

7 Conclusion and Future Work

SVM allows us to create diverse classifiers based on the input features used. The complexity of
the classifiers can be altered depending on the requirements. Although work still needs to be
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done to come up with a method to rank the images based on the annotated tags. SVM gives us
the class for a given data point, but it does not provide any measure of confidence. A method
to rank the retrieved images based on their importance needs to be implemented.

One of the methods to achieve this is cross-media relevance models. Here we try to estimate
the probability distribution between the annotated tags and segmented blobs. Although there is
no one to one correspondence between the blobs and the tags, this technique provides heuristics
to rank the images based on similarity. The work portrayed in this report builds the groundwork
for such retrieval models and will help future works to develop such a retrieval system.
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