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Abstract

Thesis Title: Workload Prediction in Cloud Datacenters Based on User Behavior
Modeling

Supervisor: Prof. Sundar B., Professor, Dept. of Computer Science and Infor-
mation Systems, Birla Institute of Technology and Science, Pilani

Semester: First Session: 2016-17

Name of Student: Pratyush Kar ID No.: 2013A7TS029P

Abstract:

Workload characterisation can be used to predict future resource requirements
in a Cloud Data Centre (CDC) environment. Understanding the workload be-
haviour or pattern plays a key role in optimal resource provisioning and may prove
vital in order to meet the stipulated service level agreements (SLAs). A better
workload prediction algorithm prevents the CDC from under or over-provisioning
of resources. This is critical for energy conservation in the datacenter and main-
taining the Quality of Service (QoS) for the end user.

User behaviour in the form of task submission has shown a strong correlation
to the workload level in the datacenter. This thesis identifies features that are rep-
resentative of user behaviour and discusses methods of modelling this behaviour.
These models are then utilised to predict future CPU and memory workloads in
the datacenter.
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Chapter 1

Introduction

1.1 Background and Motivation

Majority of the applications that are in existence nowadays are based on cloud
platforms. Various applications have diverse Quality of Service (QoS) aspects,
such as availability, reliability and performance. These aspects are stipulated in
the Service Level Agreements (SLAs) negotiated between the client and cloud ser-
vice provider. Failure to comply with the QoS requirements would incur SLA
violations resulting in loss of revenue for the service providers [1]. On an average
a user does not use the entire amount of resources that she has requested from the
cloud service provides. The providers capitalise on this behaviour by rolling out
more number of virtual machines (VMs) than they physically possess at cheaper
rates, relying of the fact that most clients applications will not run at their peak
requirements. The service providers offer on-demand performance by dynamic
provisioning of resources. Gaining a thorough understanding of the workload be-
haviour of a production cloud data centre (CDC) is important for the datacenter’s
ability to elastically scale up and down the provisioned resources. Workload char-
acterisation can be used to predict future resource requirements which help in
capacity planning and better resource utilisation.

Workload characterisation is typically performed by using two different ap-
proaches – either trace based or model based methodologies. The model based
methodology is preferred over trace based one because it is agnostic to the under-
lying system on which the trace is recorded on. Furthermore, due to the limited
number of production quality traces, a model based approach is far superior to
the trace based approaches which require frequent tweaking to make them com-
patible to new datacenter environments. Most cloud datacenter workloads are
a mix of heterogenous applications. Building a unified model that can predict
the future resource usage of these diverse applications is an extremely challenging
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task. These tasks show varied behaviour in periodicity, burstiness and repeating
patterns. Therefore it is important to break these large number of diverse ap-
plications into homogeneous clusters and build predictive models for each of the
individual clusters.

Users are responsible for driving the volume and behaviour of various tasks.
The submitted tasks may be batch jobs that may run for a prolonged duration in
the background or they may be user-interactive tasks that require active input from
the user. For each submitted task the user also mentions the requested amount
of CPU and memory resources. Identifying patterns in such requests may prove
vital in clustering the diverse application behaviour. This thesis fills this void by
developing ideas that help in modelling user behaviour and utilises these models
for developing a mechanism for resource prediction.

1.2 Objectives

The three main objectives of this thesis are as follows:

• identify parameters based on the diversity of submitted tasks to describe
user behaviour

• analyse the predictability of various resource (CPU, Memory) and identify
the presence of time patterns in the usage of various resource types

• implement models for prediction of future CPU and memory usage based on
historical data
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Chapter 2

Related Work

The analysis of workload patterns in cloud data centre (CDC) environments has
been an active research problem in cloud computing and has been addressed pre-
viously in [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Recent research
in dynamic resource allocation, explore some interesting techniques and heuristics
for predicting workload patterns in advance. Typically these techniques can be
broadly classified into – trace-based and model-based methodologies. This section
talks about some of the most relevant approaches.

2.1 Trace Based Approaches

Workload prediction has typically been done by using trace based techniques.
Traces are resource consumption metrics recorded over a prolonged period of time
from a particular datacenter infrastructure. We try to identify behavioural pat-
terns in the task submission and resource consumption in order to predict future
resource requirements. This is extremely vital for dynamic resource provisioning
in a datacenter. In this section we describe the most relevant state-of-the-art
approaches.

Wang et al. [13] discuss techniques of obtaining coarse-grain statistics from
the workloads of Cloud computing Hadoop clusters (first version of the Google
tracelog). The main objective of this work is to classify tasks and jobs based on
duration of execution. Zhang et al. [3] present a study that discusses the feasi-
bility of using mean values of task waiting time, CPU usage, memory and disk
consumption. The data used by them is not available freely and is a trace of 6
Google clusters running for a span of five days. Mishra et al. [4] identify workload
characteristics to divide the submitted tasks into multiple clusters. They further
identify qualitative boundaries for task clusters and reduce the number of clus-
ters by merging adjacent clusters. The analyses data consists of trace from five
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Google clusters across a period of 4 days. Kavulya et al. [5] present a statistical
analysis of job completion times in MapReduce traces. The data used for analy-
sis is a ten month trace of the M45 supercomputing cluster. Aggarwal et al. [6]
provide techniques to analyse Hadoop jobs in Yahoo! clusters. The trace used in
this analysis spans a period of 24 hours and contains data from storage usage of
over 11686 jobs. The dataset only contains metric data from the storage system
of Yahoo!’s distributed file system and hence this work neglects critical resources
like CPU and memory usage. Solis et al. [7] perform an extensive analysis on
the Google Cluster tracelog by identifying parameters that describe both user and
task behaviour. Using k-means clustering they divide both users and task into
representative clusters. The analysis done on these clusters is two pronged – first
cluster centroids are used to describe the overall behaviour of a particular cluster
and secondly statistical distribution models are fitted onto the distribution data
to build a model of the resource usage. Shen et al. [8] explore business critical
workloads which represent a very different behaviour than the MapReduce work-
loads of the Google tracelog. They collect traces from the distributed datacenter of
Bitbrains using the monitoring and management tools provided by VMware. The
characterisation workload is done by capturing parameters/metrics at – VM level
(CPU and memory usage), Networking level, I/O and storage level. They perform
distribution analysis on the capture trace and evaluate the correlation between
different resource types. Based on this they identify the short term predictabil-
ity of resource usage. The observations from this workload variant do not match
the profile of the Google cluster workloads. Business-critical applications show a
higher variability in CPU and memory usage than the Google cluster, where the
workloads are relatively stable.

Table 2.1: Overview of Trace Based Approaches

Authors Trace Size
Analysis

Methodology
Analysed

Components
Analysed

Parameters
Smith [2] 7 hours Coarse-grain Task Task duration

Zhang [3]
30 days

(5 day sample)
Coarse-grain Task Task resource usage

Mishra [4] 4 days Cluster centroids Task Task resource usage
Kavulya [5] 10 months Coarse-grain Task Task duration
Aggarwal [6] 24 hours Cluster centroids Task Task disk usage

Solis [7] 29 days
Cluster centroids &
distribution analysis

User & Task
User resource estimation
& task resource usage

Shen [8] 1 month
Distribution &

predictability analysis
Task

Task resource, I/O &
network usage

Although trace based approaches are more natural and try to model the real
data recorded from large production clusters, the tracelog is heavily dependent on
the underlying system architecture. A model based approach, which is agnostic
to the underlying system, is more feasible to build a prediction framework that is
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not specific to a particular set of application mix and datacenter organisation.

2.2 Model Based Approaches

As stated earlier high quality traces are essential in building an efficient work-
load prediction framework. However, the utility of a tracelog is limited to the
system on which they are recorded. Model based approaches is an alternative to
this approach. Different approaches exist in modelling workload patterns and are
fundamentally different. Broadly, we can categorise these proposed designs into –
in-breadth and in-depth modelling. In-breadth approach strives to model system-
centric measures like CPU, memory, network usage, I/O requests, etc. In-depth
approach on the other hand tracks a particular user request through multiple sys-
tem levels.

In-Breadth Modelling

This approach attempts to track workloads in different parts of the system. Tech-
niques span from modelling CPU and memory usage to modelling network and
disk I/O subsystems.

Storage forms a major part of a cloud datacenter. There has been extensive
work done on storage usage based production traces [14], [15]. Other approaches
propose to model storage usage characteristics using a state diagram model [16].
Gulati et al. [17] propose to model storage workload based on a number of features
– seek distance, I/O sizes, read/write ratio and number of I/Os. Other approaches
try to eliminate the need of system specific traces by utilising a general purpose
storage model [18], [19].

Characterising the CPU loads is extremely important for dynamic provisioning
of VMs. Abrahao et al. [20] propose a trace-based approach to identify represen-
tative features for CPU usage analysis. They analyse 12 application during the
course of 2 weeks. Using this data as the input to PCA (Principal Component
Analysis) they identify 3 features to characterise applications as noisy or intermit-
tent. Other works include modelling CPU loads in web environments [21]. Huang
et al. [22] focus on predicting CPU utilisation, in order to apply DVFS (Dynamic
Voltage and Frequency Scaling) for stalling the processors during batch jobs in
order to improve energy efficiency.

Network modelling is an important aspect of workload prediction because of
its impact in large-scale applications. Feitelson et al. [23] present a detailed
overview of distribution fitting using the Kolmogorov-Smirnov test to identify the
distribution of submitted requests. Li [24] analysis jobs based on arrival rates,
pseudoperiodicity, job size for CPU and network intensive applications. Joo et al.
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[25] attempt to model network traffic by comparing two different network models
– infinte-source-based model and a SURGE-based model.

In-Depth Modelling

In-depth modelling attempts to trace a request through multiple levels in the
datacenter hierarchy. This allows us to model a more accurate model of the user
behaviour. Liu et al. [26] capture the behaviour of the request through a 3-
tier web application. The traces used for this purpose is a TPC-W benchmark
which is a transactional web benchmark. Ganapathi et al. [27] identify multiple
task features in MapReduce jobs and use Kernel Canonical Correlation Analysis
(KCCA) to predict the execution time of submitted jobs.
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Chapter 3

Dataset

The dataset used in this work was collected from the second version (Cluster-
Data2011 2) of the Google MapReduce Cloud tracelog that spans a period of
approximately one month [28, 29]. The log contains millions of records of jobs,
tasks and server events represented in a tabular format. It also provides the CPU,
memory and disk usage per task in a timestamp every 5 minutes.

3.1 Introduction

The cluster represented in this dataset is a set of machines, packed into racks and
connected by a high bandwidth cluster network. A set of machines is termed as a
cell and which are all typically, inside a single cluster. The users submit work to
the cluster in the form of a job. A job can be comprised of one or more task, each
accompanied by a set resource and scheduling requirements. The actual resource
usage information is obfuscated as is presented in a normalised manner. Each task
represents a Linux program possibly containing multiple processes which run onto
a single virtual machine (VM).

3.2 Description

The majority of our analysis is focused on two data structures – Task events table
and Resource usage table.

3.2.1 Task Events Table

The task events table contains the following attributes:

1. timestamp – in microseconds
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2. missing info

3. job ID

4. task index – within job

5. machineID – unique 64 bit identifier

6. event type – scheduling event type

7. user name – opaque base64-encoded string

8. scheduling class

9. priority

10. resource request for CPU cores

11. resource request for RAM

12. resource request for local disk space

13. different-machine costraint

Job and task events indicate transitions between the different scheduling states.
Each task event has a integer value that represents the type of the event. The state
of the job and the individual tasks can always be determined by the event type.
The diagram below shows the state transition diagram.

Figure 3.1: State transition diagram for jobs and tasks

The resource request represents the maximum amount of CPU, memory and
disk space that a particular task is allowed to access. Tasks that use more than
the requested resources are throttled (for CPU) or killed. The scheduler often
over commits the resources on a machine. As a result at runtime, the scheduler
may not have sufficient amount of resources to execute all the tasks at once. If
the total amount of requested resources exceeds the amount of physical resources
present in the machine, the scheduler will kill one or more lower priority processes.
The runtime environment also sometimes permits tasks to use more resources than
requested, if a resource is free tasks are permitted to use excess resource for small
amounts of time.
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3.2.2 Resource Usage Table

The task resource usage table contains the following attributes:

1. start time of the measurement period – in microseconds

2. end time of the measurement period – in microseconds

3. job ID

4. task index

5. machineID

6. mean CPU usage rate

7. canonical memory usage

8. assigned memory usage

9. unmapped page cache memory usage

10. total page cache memory usage

11. maximum memory usage

12. mean disk I/O time

13. mean local disk space used

14. maximum CPU usage

15. maximum disk I/O time

16. cycles per instruction (CPI)

17. memory accesses per instruction (MAI)

18. sample portion

19. aggregation time

20. sample CPU usage: mean CPU usage during a random 1s sample in the
measurement period

Within each measurement period, measurements are sampled at 1 second inter-
vals. The one second readings are averaged over the duration of the measurement
period to obtain the aggregate value. CPU usage (also referred as the CPU us-
age rate) is measured in units of CPU core seconds per second. Both CPU and
memory usage information is not available in absolute values. The values are
normalised due to privacy concerns. Disk I/O time is measured using the blkio
subsystem. However, the trace provides no information for the disk usage in the
Google distributed file system. It only gives information of the local disk usage.
Additionally, disk usage required for binaries and read-only, pre-staged runtime
files are not included.
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3.3 Tracelog Statistical Analysis

The Google Cloud tracelog contains trace of over 12000 servers, 25 million tasks
and 930 users over the period of a month. The tracelog includes detailed data of
task submission patterns, scheduling informations and physical resource usage on
the virtual machines (VMs). The total size of the data is approximately 250GB.

Trace span 29 Days Num of servers 12532
Num of tasks 25752951 Avg tasks / day 888032.72
Num of users 930 Avg users / day 153.20
Avg task length 61575043.48 Avg tasks / user 3981.06

Table 3.1: Dataset Overview

Due to the large size of the trace, it is infeasible to analyse the entire duration
of the trace at the same time. Instead, a sampling methodology to collect the
resource utilisation statistics is more suitable. We randomly choose a sample of
moments in the duration of the trace and collect the aggregate statistics during
those moments.

Figure 3.2: Total CPU and memory usage collected from the trace for a sample of
200 moments

While the CPU and memory have (on an average) been over-allocated by the
cluster scheduler. The actual usage of CPU and memory although, hovers around
50% – slightly under for CPU and slightly over for memory. These observations
seem consistent with the finding in the technical report by Reiss et al. [30].
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Chapter 4

User Cluster Model

As stated earlier the user requests are primarily responsible for driving the work-
load in a cloud data center environment. Our methodology utilises this fact to
build a workload model centered around accurately predicting the user behavior.
We first divide the 930 unique users present in the Google Tracelog into clusters
having common attributes like submission rate, requested memory, requested CPU
and inter-arrival time between subsequent jobs.

Moreno et al. [7] identify this behavior using three important characteristics
submission rate α, and requested amount of CPU β and Memory φ. They also
define the task behavior using three essential parameters - task length χ, average
resource utilisation for CPU γ and Memory π. The resultant cloud workload can
be defined between a set of submitted tasks T and a set of unique users U . Where
α, β and φ define each user profile ui and χ, γ and π define each task profile ti
using the following equation.

U = {u1, u2, u3, ..., ui} (4.1)

T = {t1, t2, t3, ..., ti} (4.2)

ui = {f(α), f(β), f(φ)} (4.3)

ti = {f(χ), f(γ), f(π)} (4.4)

We further build on this model and identify three characteristic parameters for
user behaviour:-

• Submission Rate

• Average CPU Usage

• Average Memory Usage

12
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4.1 K Means Clustering

The second step of our methodology is dividing the users into different clusters.
This is essential in order to group users based on their attributes because users
having similar behaviour are likely to exhibit common workload effects. k means
clustering is a popular clustering approach that groups data points around the
cluster centroid points while minimizing the total sum of squared errors for the
generated clusters. One caveat of using this approach is that k, the resultant
number of clusters, needs to be fixed before the clustering can be done. Hence,
choosing an optimal value of k is essential for generating high quality resultant
clusters. For our analysis we utilise the statistical method provided by Pham
et al. [31]. The method quantifies the variability of the generated clusters and
provides an estimate of the optimal value of k. The following equations summarise
the conditions of the heuristic.

f(k) =


1 if k = I
Sk

αkSk−1
if Sk−1 6= 0,∀k > I

1 if Sk−1 = 0,∀k > I

(4.5)

αk =

{
1− 3

4Nd
if k = 2, Nd > I

αk−1 + 1−αk−1

6
if k > 2, Nd > I

(4.6)

Here f(k) represents the total variability of the resultant clusters where k is the
number of clusters in the k means algorithm. Sk is the sum of cluster distortions,
Nd is the number of attributes of the data points and αk is the weight factor of the
based on the previous clustering. We run the clustering algorithm starting from 1
to the maximum desired number of clusters. At each value of k we calculate the
variability f(k). A value of k is suggested when the resultant variability is lower
than or equal to 0.85.

f(k) <= 0.85 (4.7)

We ran this heuristic on the Google Tracelog data sample to identify the number
of user clusters and the optimal value of k was found to be 6.

13



4.2. CLUSTER ANALYSIS CHAPTER 4. USER CLUSTER MODEL

4.2 Cluster Analysis

(a) User clusters (b) User population distribution

Figure 4.1: Clusterization of users

Figure 4.1 illustrates the final user clusters after the application of k means
clustering algorithm. Majority of the user population is covered by U1 and U2
and have relatively low submission rate, average CPU and average memory usage.
Three specific users, represented by U6, have significantly high submission rate
than the rest and request large amounts of CPU and memory. U3 and U5 represent
the CPU and memory intensive jobs respectively. U4 has a low submission rate
but requests high CPU and moderately high memory resources. This behavior
is characteristic of batch jobs that are submitted less frequently and run in the
background. The coefficient of variance (Cv) is a strong indicator of the relative
spread of the data. From the figure it can be seen that most of the users represented
by U1 and U2 have a low resource usages and therefore have an extremely compact
spread. The following table expresses the statistical properties in a systematic
manner.

Table 4.1: Statistical Properties of User Clusters

Submission Rate Requested CPU Requested Memory
Cluster Population (%) Mean Stdev. Cv Mean Stdev. Cv Mean Stdev. Cv
U1 34.27 0.006 0.022 3.440 0.133 0.030 0.226 0.069 0.042 0.606
U2 47.14 0.006 0.022 3.918 0.041 0.026 0.638 0.035 0.032 0.912
U3 10.81 0.001 0.002 3.07 0.277 0.052 0.188 0.131 0.069 0.522
U4 2.16 0 0 2.91 0.631 0.154 0.244 0.202 0.106 0.525
U5 5.3 0.002 0.011 4.914 0.118 0.061 0.517 0.334 0.139 0.417
U6 0.32 0.819 0.183 0.224 0.041 0.017 0.41 0.046 0.016 0.351
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Chapter 5

Prediction Model

Once we have divided the entire workload space into groups based on user be-
havior. The prediction problem essentially condenses to a time series prediction
problem. The techniques described in this chapter are used frequently for time
series analysis. We use Support Vector Regression (SVR) as our core prediction
model. Since the time series is uni-variate we cannot use the traditional regression
techniques. We need to use the previous values in the time series to predict the
future values. We use the sliding-window technique to map the problem of re-
source usage prediction into a traditional regression problem. The sliding window
approach maps a k sized window of the input vector x to the predicted value y
that is r lags ahead.

Figure 5.1: Sliding Window Technique

Figure 5.1 illustrates the basic idea of the sliding window technique. The sliding
window interval of size k, x = [y(t), y(t+ 1), ..., y(t+ k− 1)] serves as the input to
the SVR model. The predicted value y(t+ k + r− 1) is after a lag interval of size
r which depends on the predictability of that particular resource.
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5.1 Resource Predictability

Before we can train the SVR model for predicting the future resource usage for
the different user clusters, we need to set an appropriate value of the prediction
interval (lag) r. This value needs to be fixed based on domain knowledge and
the predictability of the resource. At the minimum, we need to be able to set
the lag r so that we can take preemptive measures when we observe a sudden
increase/decrease in resource usage, for example booting up/reallocating virtual
machines (VMs). This feature is extremely essential for implementing resource
dynamic provisioning. To this end, we plot the autocorrelation function (ACF)
for various time lags to identify the appropriate value of time lag. Autocorrelation
of serial correlation is the similarity between the values of a signal and observations
after a particular time lag.

ACF (r) =
E[(Yt − µ)(Yt+r − µ)]

σ2
(5.1)

(a) Strong daily patterns (b) No daily patterns

Figure 5.2: ACF Plots for CPU usage

We plot the ACF plots for every user cluster and each resource type for lag
values 0 to 7 days at 2 minute intervals. Figure 5.2 depicts two qualitatively
different ACF plots of two separate user clusters. We see a strong daily patterns
in the left ACF plot, hence the CPU usage for that user cluster can be predicted in
well advance hence, we can set high value for the prediction interval. On the other
hand the right ACF plot has a high ACF value for a small lag and the ACF value
rapidly falls for further lags. This tells us that the CPU usage for that particular
user cluster can only be predicted in the short-term. We see similar patterns for
requested memory usage for various clusters.
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5.2 SVR Model

Owing to the enormous size of the Google Tracelog dataset we employ a sampling
technique to obtain the usage statistics of various resources like CPU and memory.
Due to this the resultant time series is extremely noisy and unsuitable for applying
the SVR prediction model. We need to extract the relevant signal from the noisy
data but at the same time we must preserve the sudden spikes in resource usages.
We achieve this using the Savitzky-Golay filter [32]. Savitzky-Golay filter improves
the signal to noise ratio without completely flattening sudden peaks in the signal.
This is done by fitting a low order polynomial in successive windows of the input
signal. The following figure demonstrates the merits of Savitzky-Golay filter, other
filters like moving average and erosion filters undermine the peaks in the noisy
signal data, whereas Savitzky-Golay removes noise and preserves the peaks.

Figure 5.3: Savitzky-Golay Filter

Support Vector Regression (SVR) is an extension of the Support Vector Ma-
chine (SVM) for the regression problem. It essential has the same features as
SVM but with an added error term. In this technique we try to find the hyper-
plane which minimises the total error term. The idea behind SVR is to find the
optimal value of hyperplane parameters that maximise the margin of the decision
boundary. The objective is to find optimal values for y = ~w.~x+ b.
Minimise:

1

2
||~w||2 + C

n∑
i=1

(ξi + ξ∗i ) (5.2)

Constraints:
yi − ~w.~xi − b ≤ ε+ ξi (5.3)

~w.~xi + b− yi ≤ ε+ ξ∗i (5.4)

ξ, ξ∗ ≥ 0 (5.5)
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Figure 5.4: Support Vector Regression

The true power of SVR lies in the use of kernel functions. It can map the given
data points to a higher dimensional space (possibly infinite) and apply SVR on the
transformation without incurring a significant increase in the computation. This is
done through the use of kernel functions K which allow dot product computation
without actually transforming the original point to the higher dimensional space.

K(xi, xj) ≡ φ(xi)
Tφ(xj) (5.6)

The kernel function used in the implementation is the Radial Basis Function
(RBF) given by the following equation:-

K(xi, xj) = e−γ||xi−xj ||
2

, γ > 0 (5.7)

We apply the aforementioned SVR model on each user cluster for every resource
usage. The hyper parameters of the model are optimised using the grid search
technique. Finally, models of all the user clusters (see Appendix A for individual
user models) is combined into a single ensemble model. The following figure shows
the performance of our prediction model for requested CPU usage using 40% of
the data for training. The predicted value is shown in red while the actual values
is shown in blue.

Figure 5.5: Prediction Model
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5.3 Evaluation Criteria

We evaluate the fitness accuracy of our generated models based on a number of dif-
ferent metrics like PRED(25), R2 Prediction accuracy, Mean Absolute Percentage
Error (MAPE). In this section we describe the metrics and showcase our results.

Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error is given by the following formula:-

MAPE =
1

n

n∑
i=1

|ŷi − yi|
yi

(5.8)

Here yi is the actual workload value while ŷi is the predicted output. The lower
the value of MAPE the better the performance of the prediction model.

PRED(25)

PRED(25) represents the number of values that have been predicted within a 25%
error window of the actual value. It can be represented by the following equation:

PRED(25) =
No. of observations with relative error ≤ 25%

No. of observations
(5.9)

The closer this value to 1.0 the better the prediction model.

R2 Prediction Accuracy

R2 Prediction Accuracy is a measure of the goodness of fit of the predicted curve
to the actual curve. It can be represented by the following equation:

R2 = 1−
∑n

i=1 (ŷi − yi)2∑n
i=1(ŷi − ȳ)

(5.10)

where ȳ = 1
n

∑n
i=1 yi, yi is the actual workload value while ŷi is the predicted

output. The value of the R2 prediction accuracy lies between the range [0, 1].
This metric determines how closely a model fits a given curve. The value of 1.0
represents a perfect fit by the forecasting model.

We used the k fold cross validation technique to identify the best prediction
model for a given user cluster. The total training set was divided into k sets
y1, y2, ..., yk. The SVR model was trained by successively leaving out one set and
training the model on the rest k − 1 sets. The left out set is used as a validation
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set to get an estimate of the generalisation accuracy. The length of the sliding
window was set to a modest value of 10.
The following table shows the values of the error metrics for our prediction model.

Table 5.1: Prediction Accuracy of the SVR model

MAPE R2 Prediction Accuracy PRED(25)
1.208 0.902 0.972
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Chapter 6

Conclusion

In this work, we design a system that utilised user behavior modelling for the
prediction of future workloads in a cloud data center environment. As a part of this
system, we explore various methods of modelling the user behavior. In our system,
we use k-means clustering algorithm to divide the users based on the attributes
of the submitted jobs. This distinction allows use to train separated models for
different clusters, thereby, giving the model flexibility to work in environments
having a diverse application mix. Once we have segregated all the users in clusters
we analyse the predictability of various resources using the autocorrelation plots,
which tell us how far in advance can we accurately predict the future workload.
We model the time series forecasting problem into a classical regression problem
using the sliding window technique and use SVR build the regressor.

We have tested the aforementioned technique on a 7 day window of the Google
Tracelog dataset and the preliminary results are promising. Such a system, when
completely developed, will be an asset in developing efficient dynamic provisioning
in cloud datacenters.
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Chapter 7

Future Scope

The current mechanism only uses basic features like normalised values of requested
CPU and memory resources, submission rate, inter-arrival time for the initial
clustering of resources. While such features have shown to be useful in successfully
clustering the different users, we need to identify complex features that capture the
periodicity, burstiness of the user submissions. Incorporating such features into
the k-means clustering algorithm will greatly increase the quality of the resultant
clusters thereby, improving the performance of the overall system.

Secondly, in the existing system we are using the requested amount of resources
(CPU and memory) as a method of distinguishing various user clusters. But, the
requested resources are not a true reflection of the amount of resources a task is
actually utilising. Although, the Google Tracelog has information about the task
usage, the duration for which a task is running is extremely small compared to
the trace duration. Thus, the actual usage statistics have an extremely bursty
workload profile.

Figure 7.1: CPU requested vs CPU usage

As in any computing system, the amount of resources requested by a task
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is not completely representative of the amount resource that is actually going
to be used. Hence, including the usage statistics in the prediction system will
significantly improve the accuracy of the system.
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Appendix A

Cluster CPU Usage Analysis

The data analysed in this study is a seven day snapshot from the 29 day Google
Tracelog. It is evident from Figure A.1 and Figure A.2 the requested CPU work-
load has a general trend of increase. However, different user clusters exhibit dif-
ferent workload profiles. U1 and U2, which constituted the majority of the user
population, have entirely different profiles in terms of periodicity. U1 has a gen-
eral increasing trend having hourly patterns. Although the SVR model captures
these hourly trends beautifully, it is unable to capture the sudden increase in CPU
workload that occurs around day 5. U2 on the other hand exhibit strong daily
patterns and that is modelled properly by the SVR predictor. As stated before U4
has an extremely low submission rate and has a high average CPU request. As a
consequence of the low submission rate U4 has an extremely bursty CPU profile
making it difficult to train the SVR predictor suitably. U6 has an extremely high
submission rate but the number of jobs running at a time are negligible hence
we can neglect its effects on the overall workload profile. The bursty nature of
the U4’s workload and sudden increase in U1’s workload cause the sub-optimal
behavior of the SVR predictor in the in the later stages of the seven day snapshot.
This problem can be rectified by adding a linear regression component in the SVR
predictor.

Figure A.1: Overall CPU Workload Profile
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(a) U1 (b) U2

(c) U3 (d) U4

(e) U5 (f) U6

Figure A.2: CPU Prediction Models for User Clusters
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